.ARCTAN LDA P \ Set T1 = P EOR Q, which will have the sign of P * Q EOR Q STA T1 LDA Q \ If Q = 0, jump to AR2 to return a right angle BEQ AR2 ASL A \ Set Q = |Q| * 2 (this is a quick way of clearing the STA Q \ sign bit, and we don't need to shift right again as we \ only ever use this value in the division with |P| * 2, \ which we set next) LDA P \ Set A = |P| * 2 ASL A CMP Q \ If A >= Q, i.e. |P| > |Q|, jump to AR1 to swap P BCS AR1 \ and Q around, so we can still use the lookup table JSR ARS1 \ Call ARS1 to set the following from the lookup table: \ \ A = arctan(A / Q) \ = arctan(|P / Q|) SEC \ Set the C flag so the SBC instruction in AR3 will be \ correct, should we jump there .AR4 LDX T1 \ If T1 is negative, i.e. P and Q have different signs, BMI AR3 \ jump down to AR3 to return arctan(-|P / Q|) RTS \ Otherwise P and Q have the same sign, so our result is \ correct and we can return from the subroutine .AR1 \ We want to calculate arctan(t) where |t| > 1, so we \ can use the calculation described in the documentation \ for the ACT table, i.e. 64 - arctan(1 / t) LDX Q \ Swap the values in Q and P, using the fact that we STA Q \ called AR1 with A = P STX P \ TXA \ This also sets A = P (which now contains the original \ argument |Q|) JSR ARS1 \ Call ARS1 to set the following from the lookup table: \ \ A = arctan(A / Q) \ = arctan(|Q / P|) \ = arctan(1 / |P / Q|) STA T \ Set T = 64 - T LDA #64 SBC T BCS AR4 \ Jump to AR4 to continue the calculation (this BCS is \ effectively a JMP as the subtraction will never \ underflow, as ARS1 returns values in the range 0-31) .AR2 \ If we get here then Q = 0, so tan(A) = infinity and \ A is a right angle, or 0.25 of a circle. We allocate \ 255 to a full circle, so we should return 63 for a \ right angle LDA #63 \ Set A to 63, to represent a right angle RTS \ Return from the subroutine .AR3 \ A contains arctan(|P / Q|) but P and Q have different \ signs, so we need to return arctan(-|P / Q|), using \ the calculation described in the documentation for the \ ACT table, i.e. 128 - A STA T \ Set A = 128 - A LDA #128 \ SBC T \ The subtraction will work because we did a SEC before \ calling AR3 RTS \ Return from the subroutine .ARS1 \ This routine fetches arctan(A / Q) from the ACT table JSR LL28 \ Call LL28 to calculate: \ \ R = 256 * A / Q LDA R \ Set X = R / 8 LSR A \ = 32 * A / Q LSR A \ LSR A \ so X has the value t * 32 where t = A / Q, which is TAX \ what we need to look up values in the ACT table LDA ACT,X \ Fetch ACT+X from the ACT table into A, so now: \ \ A = value in ACT + X \ = value in ACT + (32 * A / Q) \ = arctan(A / Q) RTS \ Return from the subroutineName: ARCTAN [Show more] Type: Subroutine Category: Maths (Geometry) Summary: Calculate A = arctan(P / Q) Deep dive: The sine, cosine and arctan tablesContext: See this subroutine in context in the source code Variations: See code variations for this subroutine in the different versions References: This subroutine is called as follows: * PLS4 calls ARCTAN

Calculate the following: A = arctan(P / Q) In other words, this finds the angle in the right-angled triangle where the opposite side to angle A is length P and the adjacent side to angle A has length Q, so: tan(A) = P / Q

[X]

Configuration variable: ACT = &07E0

The address of the arctan lookup table, as set in elite-loader3.asm

[X]

Label AR1 is local to this routine

[X]

Label AR2 is local to this routine

[X]

Label AR3 is local to this routine

[X]

Label AR4 is local to this routine

[X]

Label ARS1 is local to this routine

[X]

Subroutine LL28 (category: Maths (Arithmetic))

Calculate R = 256 * A / Q